to use all UBQ features!

Physics UBQ

Supercharge Your Learning with 1000+ AP Level Physics Problems
0%
Phy UBQ Count Message Here
Intermediate
Conceptual
MCQ

One end of a string is wrapped around a pulley that is free to rotate with negligible friction about an axle at its center. The other end of the string is attached to a block. The block is released from rest and moves downward with constant acceleration. Which of the following correctly indicates whether the amount of work done on the pulley by the string during each successive complete rotation remains constant or increases, and provides a valid justification?

Advanced
Mathematical
FRQ

The diagram above shows a marble rolling down an incline, the bottom part of which has been bent into a loop. The marble is released from point A at a height of \(0.80 \, \text{m}\) above the ground. Point B is the lowest point and point C the highest point of the loop. The diameter of the loop is \(0.35 \, \text{m}\). The mass of the marble is \(0.050 \, \text{kg}\). Friction forces and any gain in kinetic energy due to the rotating of the marble can be ignored. When answering the following questions, consider the marble when it is at point C.

Advanced
Conceptual
MCQ

A block of weight \( W \) is pulled along a horizontal surface at constant speed by a force \( F \), which acts at an angle of \( \theta \) with the horizontal. The normal force exerted on the block by the surface has magnitude:

Advanced
Conceptual
MCQ

A block is attached to a horizontal spring and is initially at rest at the equilibrium position \( x = 0 \), as shown in Figure \( 1 \). The block is then moved to position \( x = -A \), as shown in Figure \( 2 \), and released from rest, undergoing simple harmonic motion. At the instant the block reaches position \( x = +A \), another identical block is dropped onto and sticks to the block, as shown in Figure \( 3 \). The two–block–spring system then continues to undergo simple harmonic motion. Which of the following correctly compares the total mechanical energy \( E_{\text{tot},2} \) of the two–block–spring system after the collision to the total mechanical energy \( E_{\text{tot},1} \) of the one–block–spring system before the collision?

Advanced
Mathematical
GQ

Two workers are holding a thin plate with length \(5 \, \text{m}\) and height \(2 \, \text{m}\) at rest by supporting the plate in the bottom corners. The workers are standing at rest on a slope of \(10^\circ\). Treat these supporting forces as vertical normal forces and calculate their magnitudes and state if both workers are sharing “the job” fairly.

Advanced
Mathematical
MCQ

The elliptical orbit of a comet is shown above. Positions \(1\) and \(2\) are, respectively, the farthest and nearest positions to the Sun, and at position \(1\) the distance from the comet to the Sun is \(10\) times that at position \(2\). What is the ratio \(\dfrac{F_1}{F_2}\), the force on the comet at position \(1\) to the force on the comet at position \(2\)?

Advanced
Conceptual
MCQ

Which of the following must be true for an object at translational equilibrium?

Advanced
Mathematical
GQ

A \(5\)-meter long ladder is leaning against a wall, with the bottom of the ladder \(3\) meters from the wall. The ladder is uniform and has a mass of \(20 \, \text{kg}\). A person of mass \(80 \, \text{kg}\) is standing on the ladder at a distance of \(4\) meters from the bottom of the ladder. What is the force exerted by the wall on the ladder?

Intermediate
Mathematical
FRQ

A drinking fountain projects water at an initial angle of \( 50^ \circ \) above the horizontal, and the water reaches a maximum height of \( 0.150 \) \( \text{m} \) above the point of exit. Assume air resistance is negligible.

Intermediate
Mathematical
FRQ

A toy car moves off the edge of a table that is \(1.25 \, \text{m}\) high. If the car lands \(0.40 \,\text{m}\) from the base of the table…

Advanced
Mathematical
MCQ

A block attached to spring demonstrates simple harmonic motion about its equilibrium position with amplitude [katex] A [/katex] and angular frequency [katex] \omega [/katex]. What is the maximum magnitude of the block’s velocity?

Beginner
Conceptual
MCQ

A student kicks a soccer ball. The ball exerts a force back on the student’s foot. Why doesn’t the student’s foot accelerate backward as much as the ball accelerates forward?

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Sign In to View Your Questions

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.