A cart is initially moving at 0.5 m/s along a track. The cart comes to rest after traveling 1 m. The experiment is repeated on the same track, but now the cart is initially moving at 1 m/s. How far does the cart travel before coming to rest?
The diagram above shows a hydraulic chamber with a spring \( (k_s = 1250 \, \text{N/m}) \) attached to the input piston and a rock of mass \( 55.2 \, \text{kg} \) resting on the output plunger. The input piston and output plunger are at about the same height, and each has negligible mass. The chamber is filled with water.
A soccer ball with an initial height of \(1.5 \, \text{m}\) above the ground is launched at an angle of \(30^\circ\) above the horizontal. The soccer ball travels a horizontal distance of \(45 \, \text{m}\) to a \(9.0 \, \text{m}\) high castle wall, and passes over \(3.20 \, \text{m}\) above the highest point of the wall. Assume air resistance is negligible.
The experimental diving rig is lowered from rest at the ocean’s surface and reaches a maximum depth of \(80\) \(\text{m}\). Initially it accelerates downward at a rate of \(0.10\) \(\text{m/s}^2\) until it reaches a speed of \(2.0\) \(\text{m/s}\), which then remains constant. During the descent, the pressure inside the bell remains constant at \(1\) atmosphere. The top of the bell has a cross-sectional area \(A = 9.0\) \(\text{m}^2\). The density of seawater is \(1025\) \(\text{kg/m}^3\).
A car accelerates from rest with an acceleration of \( 4.3 \, \text{m/s}^2 \) for a time of \( 6.8 \, \text{s} \). The car then slows to a stop with an acceleration of \( 5.1 \, \text{m/s}^2 \). What is the total distance traveled by the car?
The graph above represents the motion of an object traveling in a straight line as a function of time. What is the average speed of the object during the first four seconds? Note the displacemnt from 0 to 4 seconds is 2 meters
A massless rigid rod of length [katex]3d[/katex] is pivoted at a fixed point [katex]W[/katex], and two forces each of magnitude [katex]F[/katex] are applied vertically upward as shown above. A third vertical force of magnitude [katex]F[/katex] may be applied, either upward or downward, at one of the labeled points. With the proper choice of direction at each point, the rod can be in equilibrium if the third force of magnitude [katex]F[/katex] is applied at point?
A block of mass M1 travels horizontally with a constant speed v0 on a plateau of height H until it comes to a cliff. A toboggan of mass M2 is positioned on level ground below the cliff. The center of the toboggan is a distance D from the base of the cliff.
A force F is exerted by a broom handle on the head of a broom, which has a mass m. The handle is at an angle θ to the horizontal. The work done by the force on the head of the broom as it moves a distance d across a horizontal floor is:
Wanda watches the fish in her fish tank and notices that the angelfish like to feed at the water’s surface, while the catfish feed \( 0.300 \) \( \text{m} \) below at the bottom of the tank. If the average density of the water in the tank is \( 1000. \) \( \text{kg/m}^3 \), what is the pressure on the catfish?
The block is moving horizontally at a constant velocity. There are two applied forces on the object as shown in the image. In which direction is the friction force acting on the object?
An object moves at constant speed in a circular path of radius \( r \) at a rate of \( 1 \) revolution per second. What is its acceleration in terms of \(r\)?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Quick Start Guide
AP physics 1, AP C, honors and advanced physics students.
Quickly filter questions by units and more.
Here’s guide to using 5 UBQ filters.
GQ = general question, MCQ = multiple choice, FRQ = free response.
Click the check or bookmark button.
Now you’ll be able to see completed or bookmarked questions at a glance!
Answer keys, personalized for you.
Phy will be responsible for grading your FRQs and GQs.
No more copy and pasting. Just solve and snap.
Questions for Mastery
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.