What we found:

Search

A linear spring of negligible mass requires a force of \( 18.0 \, \text{N} \) to cause its length to increase by \( 1.0 \, \text{cm} \). A sphere of mass \( 75.0 \, \text{g} \) is then attached to one end of the spring. The distance between the center of the sphere \( M \) and the other end \( P \) of the un-stretched spring is \( 25.0 \, \text{cm} \). Then the sphere begins rotating at constant speed in a horizontal circle around the center \( P \). The distance \( P \) and \( M \) increases to \( 26.5 \, \text{cm} \).

Read More >

The diagram above shows a marble rolling down an incline, the bottom part of which has been bent into a loop. The marble is released from point A at a height of 0.80 m above the ground. Point B is the lowest point and point C the highest point of the loop. The diameter of the loop is 0.35 m. The mass of the marble is 0.050 kg. Friction forces and any gain in kinetic energy due to the rotating of the marble can be ignored. When answering the following questions, consider the marble when it is at point C.

Read More >

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.